COLLEGE ORGANIC CHEMISTRY 2011 OUTLINES

Organic Chemistry Chapter 1 – Structure, Bonding, Acids and Bases, Nomenclature Lewis Structures

Electrons and Bonding

wave functions (ψ) and probability functions (ψ^2) sigma and pi bonds atomic oribitals and molecular orbitals hybridization

# of e ⁻ domains	Hybridization	Bond angle
2	sp	180°
3	sp ²	120°
4	sp ³	109.5°

the bond angle decreases if the central element has non-bonding electrons and is in period two

Resonance

Non-bonding electrons can move to an adjacent bond π electrons can move to an adjacent atom or adjacent bond Electrons tend to move toward a '+' formal charge and/or away from a '-' formal charge

Acids and Bases

 \downarrow pKa = stronger acid, \downarrow pKb = stronger base

The stronger the acid, the weaker its conjugate base and vice-versa.

The more stable the base, the weaker the base.

Ranking Acids and Bases

- 1) <u>Charge</u> More negatively charged species are typically more basic, and more positively charged species are typically more acidic.
- 2) <u>Atom</u> The <u>larger</u> and/or more <u>electronegative</u> the atom with a negative charge, the more stable it is.
- 3) <u>Resonance</u> stabilization.
- 4) <u>Dipole Induction</u> Electron withdrawing groups (i.e., electronegative atoms) near the atom that has the negative charge stabilize the ion/molecule.
- 5) <u>Orbitals</u> a pair of electrons is more stable as follows: $sp > sp^2 > sp^3$

Nomenclature

Alkanes

- 1) Find the longest continuous carbon chain to determine base name.
- 2) Number the carbons, starting on the end closest to the first sutstituent.
- 3) Name the substituents attached to the chain. Use the chain number as the locator. Multiple substituents use di-, tri-, tetra- etc.
- 4) List substituents in alphabetical order. Ignore numerical prefixes and hyphenated prefixes (*tert-* and *sec-*), but not iso and cyclo.
- 5) If there is more than one way of numbering the chain to give the substituents the lowest possible numbers, rank the substituents by alphabetical order giving the lower number to the substituent beginning with the the letter closer to 'A.'
- 6) If there is more than way of to come up with the longest parent chain, then choose the one with the most substituents.

Naming Complex substituents

Naming alkyl halides, ethers, alcohols, amines, alkenes

meth
 eth
 prop
 but
 pent
 hex
 hept
 oct
 non
 dec
 undec

12 dodec

Organic Chemisry Chapter 2 – Molecular Interactions and Conformations

Intermolecular Forces

London Dispersion Forces (van der Waals Forces) – weak interactions due to a transient (temporary) dipole -all molecules have these; the larger you are, the larger the force

Dipole-Dipole Forces – interaction between molecules having permanent dipole moments -the larger the dipole moment, the larger the force

Hydrogen Bonding – a super strong dipole-dipole force -must have hydrogen bound to F, O, N to H-bond as a pure liquid -must only have F, O, N to hydrogen bond with water

> <u>Effects on melting pt and boiling pt</u> Branching decreases the boiling pt, but increases the melting pt

Solubility - "Like dissolves like."

Newman Projections Staggered and eclipsed conformations Gauche Interactions

Chair Conformations of Cyclohexane

Substituents in equatorial positions are lower in energy (i.e. more stable) than when in axial positions

Axial bonds

Equatorial bonds

1,3-diaxial interactions

Reaction Coordinate Diagrams Endogonic vs Exergonic $\Delta G = -RTlnK_{eq}$ Transition state, activation energy, rate constant Hammond Postulate

Chiral compounds have non-superimposable (non-identical) mirror images called *enantiomers*. *Achiral* compounds have mirror images that are superimposable (identical).

Chiral compounds are said to be *optically active*.

A 50/50 mixture of enantiomers is called a *racemic mixture* and is optically inactive.

Chirality centers are tetrahedral centers with four different substituents (i.e. asymmetric centers). R vs. S

Fischer projections

Multiple chiral centers *Diastereomers Meso* compounds (achiral but having chiral centers)

Amine inversion

Nomenclature

-E/Z

Addition Reactions to Alkenes

Reagents	What's added	Regioselectivity	Stereoselectivity	Rearrangements
HBr (or HCl, HI)	H^+ and Br^-	Markovnikov	-	Possible
H_3O^+	H^+ and OH^-	Markovnikov	-	Possible
$\mathrm{H}^{+},\mathrm{ROH}$	H^+ and OR^-	Markovnikov	-	Possible
Br_2/CCl_4 (or Cl_2/CCl_4)	Br^+ and Br^-	-	Anti	Not possible
Br ₂ /H ₂ O	Br^+ and OH^-	Markovnikov	Anti	Not possible
Cl_2/H_2O				
Br ₂ /ROH	Br^+ and OR^-	Markovnikov	Anti	Not possible
Cl ₂ /ROH				
(1) $Hg(OAc)_2$, H_2O	H^+ and OH^-	Markovnikov	Anti	Not possible
(2) NaBH ₄				
(1) Hg(OAc) ₂ , ROH	H^+ and OR^-	Markovnikov	Anti	Not possible
(2) NaBH ₄				
(1) BH_3 THF	H^+ and OH^-	Anti-Markovnikov	Syn	Not possible
(2) H_2O_2 , OH^- , H_2O				
H ₂ /catalyst	H and H	-	Syn	Not possible
(Catalyst = Pt/C, Pd/C, or Ni)				
HBr/ROOR (peroxide)	H ⁻ and Br ⁻	Anti-Markovnikov	-	Not possible
RCO_3H/K_2CO_3 (MCPBA)	epoxide		Syn	Not possible
CH_2N_2/Δ (carbene)	cyclopropane	-	Syn	Not Possible

Stability (More substituted alkenes are more stable)

Heats of Hydrogenation

Nomenclature

Acidity of alkynes

Reduction (Addition of Hydrogen)

Addition of H-X or X₂

Alkynes are less reactive than alkenes in addition rxns

Hydroboration oxidation with a terminal alkyne produces an aldehyde (anti-Markovnikov)

Organic Chemistry Chapter 7 – Conjugated Systems

Addition Rxns to Conjugated Dienes

Kinetic Product – has lowest activation energy (has most stable transition state) Major product at lower temperatures Thermodynamic Product – most stable product (i.e. most substituted alkene) Major product at higher temperatures

π Molecular Orbitals

1,3-butadiene allyl system benzene

Diels-Alder Rxns ([4 + 2] cycloaddition)

<u>concerted syn</u> addition between dienophile and electron-deficient diene diene must be in the s-cis conformation only 1,2 and 1,4 products observed with unsymmetrical reagents (relationship of D to W) Frontier Molecular Orbital Theory (FMO Theory) Conservation of orbital symmetry

Organic Chemistry Chapter 8 – Substitution Reactions

rate = k[substrate][nucleophile]
results in inversion of configuration

<u>S_N1 reactions</u> – Substitution Nucleophilic Unimolecular

Rate = k[substrate]

Carbocation rearrangements are possible

Results in both inversion and retention of configuration (racemization)

Weak nucleophiles (or low concentrations of strong nucleophiles) are ok as it isn't in the RDS Addition of AgNO₃ facilitates carbocation formation

$S_N 2$	vs.	$S_N 1$
---------	-----	---------

	S _N 2	S _N 1
Nucleophile	strong required	weak is ok
Electrophile (has LG)	$CH_3 > 1^\circ > 2^\circ$	$3^{\circ} > 2^{\circ}$
Solvent	polar aprotic (preferred)	polar protic
Leaving Group	Good $(I > Br > Cl > F)$	Good $(I^{Br} > Br^{C} > Cl^{Sr})$
Rearrangements	Not Possible	Possible
Inversion	Yes	No (Racemization)

polar aprotic solvents include DMSO, acetone, DMF, and acetonitrile (know structures)

benzylic and allylic substrates

aryl and vinyl halides are unreactive

nucleophile strength in protic solvent

in aprotic solvent

Use of KF with crown ethers for S_N2_rxns

Organic Chemistry Chapter 9 – Elimination Reactions

E2 reactions – Elimination Bimolecular

rate = k[substrate][base] H and X (leaving group) should be anti-periplanar (anti-coplanar) Forms most substituted double bond (Zaitsev's Rule) Forms least substituted (Hofmann) if F⁻ is the leaving group Forms least substituted (Hofmann) if a bulky base is used with 3° halide

<u>E1 reactions</u> – Elimination Unimolecular

Mechanism

Rate = k[substrate] Carbocation rearrangements are possible Forms most substituted double bond (Zaitsev's Rule) Favored by heat due to entropy

E2	vs.	E1
----	-----	-----------

	E2	E1	
Base	Base strong base		
Electrophile (has LG)	3°>2°>1°	3° > 2°	
Solvent	polar aprotic (best)	polar protic	
Leaving Group	Good $(I > Br > Cl > F)$	Good $(I^{>}Br^{>}Cl^{>}F)$	
Rearrangements	Not possible	Possible	
Stereochemistry	Anti-coplanar	None	

	S _N 2	E2	S _N 1	E1
Electrophile (has LG)	$CH_3 > 1^\circ > 2^\circ$	3°>2°>1°	$3^{\circ} > 2^{\circ}$	$3^{\circ} > 2^{\circ}$
Nucleophile/Base	strong nuc	strong base	weak nuc	weak base
Solvent	polar aprotic (preferred)	polar aprotic (preferred)	polar protic	polar protic
Leaving Group	good	good	good	good

Substitution/Elimination Map

Organic Chemistry Chapter 10 – Radical Rxns

Chlorination vs Bromination

Mechanism

Addition of HBr/ROOR

Mechanism Initiation

 $R - \overset{\frown}{O} - \overset{\frown}{O} - R' \xrightarrow{\Delta} R - \overset{\frown}{O} \cdot + \cdot \overset{\frown}{O} - R'$ $R - \overset{\frown}{O} \cdot + \overset{\frown}{H} - \overset{\frown}{Br} \longrightarrow R - O - H + Br \cdot$

Propagation

Organic Chemistry Chapter 11 – Mass Spectrometry

A beam of electrons is used to remove an electron (or electrons) from a molecule.

If the molecule doesn't fragment, this results in a radical cation which is called the molecular ion.

The molecule may also fragment forming a radical and a cation.

Only the cation is detected!

The tallest peak on the spectrum is called the base peak.

The rest of the peaks are given values expressed as a percentage of the height of the base peak.

Predicting fragmentation patterns

The most stable fragments will yield the tallest peaks.

Resonance-stabilized and more substituted carbocations are more stable.

Patterns to identify

<u>Bromine's</u> M+2 peak is nearly as tall as its M^+ peak <u>Chlorine's</u> M+2 peak is about 1/3 the size of its M^+ peak <u>Nitrogen</u>-containing compounds have an odd m/z for the M^+ peak

<u>Iodine</u>-containing compounds have a large 'gap' in the spectrum corresponding to the MW of 127 for iodine; often there is a peak at 127 as well.

Alcohols don't typically have a true parent peak, but usually have an M-18 peak as the peak furthest to the right corresponding to the loss of H_2O

Substituted benzenes typically fragment to form the tropylium ion (m/z 91)

- m/z 15 methyl group
- m/z 29 ethyl group
- m/z 43 propyl group
- m/z 57 butyl group
- m/z 41 allyl group

Organic Chemistry Chapter 12 – IR Spectroscopy

Infra-red light results in the stretching and/or bending of bonds.

Bonds will stretch or bend at characteristic frequencies that allow us to determine the type of bond.

This allows us to identify many of the functional groups. Frequencies are measured in inverse cm (cm⁻¹) which are called wavenumbers. Stretching a bond must change the dipole of a molecule for the bond to be IR active.

You need to be able to identify the following absorbtions:

Aromatic C-C	two peaks usually in the range of 1500-1600 cm^{-1}		
C=C	$\sim 1650 \text{ cm}^{-1}$		
C=0	$\sim 1710 \text{ cm}^{-1}$ (shifts to $\sim 1735 \text{ cm}^{-1}$ for esters)		
C≡C	$\sim 2100-2300 \text{ cm}^{-1}$		
C≡N	$\sim 2100-2300 \text{ cm}^{-1}$		
C-H (aldehyde)	Two peaks at 2710 and 2810 cm^{-1}		
sp ³ C-H	just to the right of 3000 cm ⁻¹		
$sp^2 C-H$	just to the left of 3000 cm ⁻¹		
sp C-H	\sim 3300 cm ⁻¹		
N-H	\sim 3300 cm ⁻¹ (one peak for –NH-, two peaks for –NH ₂)		
O-H (alcohol)	\sim 3400 cm ⁻¹ (a broad, smooth peak)		
O-H (acid)	~2500-3500 cm ^{-1} (a very broad, ugly peak—not smooth)		
C=C C=N C-H (aldehyde) sp^{3} C-H sp^{2} C-H sp C-H N-H O-H (alcohol) O-H (acid)	~2100-2300 cm ⁻¹ ~2100-2300 cm ⁻¹ Two peaks at 2710 and 2810 cm ⁻¹ just to the right of 3000 cm ⁻¹ just to the left of 3000 cm ⁻¹ ~3300 cm ⁻¹ ~3300 cm ⁻¹ (one peak for $-NH$ -, two peaks for $-NH_2$) ~3400 cm ⁻¹ (a broad, smooth peak) ~2500-3500 cm ⁻¹ (a very broad, ugly peak—not smooth		

Organic Chemistry Chapter 13 – NMR Spectroscopy

¹³C NMR

Gives the number of carbon environments in a molecule

The chemical shift also tells whether the carbon is an alkane, alkene, aromatic, or carbonyl (C=O)

<u>H NMR</u>

Gives the number of hydrogen environments in a molecule

1) The chemical shift tells whether the hydrogen is an alkane, alkene, aromatic, aldehyde, or carboxylic acid 2) The area under the signal or integration tells how many hydrogens a signal represents (or at least the ratio)

3) The number of peaks tells the number of neighbors (# peaks = n + 1)

#1

#2

#5

Alcohols

Nomenclature

the halogens are electron withdrawing when attached to a $\pi\text{-system}$ even though they have non-bonding electrons due to electronegativity

Reactions of Alcohols

 $\begin{array}{l} \mbox{Rxn with H-X (HBr or HCl/ZnCl_2)} \\ \mbox{S}_N1 \mbox{ for } 2^\circ \mbox{ and } 3^\circ \mbox{ alcohols} \\ \mbox{S}_N2 \mbox{ for } 1^\circ \mbox{ alcohols} \\ \end{array}$

OH POCI₃

Oxidation

Na₂Cr₂O₇/H₂SO₄ oxidizes 1° alcohols to carboxylic acids, 2° alcohols to ketones, and aldehydes to acids

PCC oxidizes 1° alcohols to aldehydes and 2° alcohols to ketones

Ethers Nomenclature

Nomenclature of Epoxides (Oxiranes)

Organic Chemistry Chapter 15 – Aromatic Compounds

Criteria for Aromatic Compounds

- 1) cyclic and containing conjugated pi bonds
- 2) each atom in the ring must have an unhybridized p orbital (no sp^3 atoms in ring)
- 3) planar structure
- 4) delocalization of the pi electrons must lower the electronic energy (4N+2 electrons)

<u>Antiaromatic</u> compounds satisfy the first 3 rules above but delocalization of the pi electrons increases the electronic energy (4N electrons)

Nonaromatic compounds are those that don't satisfy one or more of the first 3 rules above

<u>π Molecular Orbitals</u>

benzene

Electrophilic Aromatic Substitution

Friedel-Crafts Alkylation R-X/AlCl₃

- 1) Fails with strongly deactivated benzenes (benzenes with strong electron withdrawing groups attached)
- 2) Carbocation rearrangement
- 3) Alkylation activates the ring: multiple alkylations are hard to avoid

Friedel-Crafts Acylation

Fails with strongly deactivated rings

Mechanism involves acylium ion

Favors para if ortho/para director is on benzene due to bulkiness

<u>Formylation</u> (adds one carbon to form an aldehyde) CO, HCl, AlCl₃/CuCl Called the Gatterman-Koch synthesis

Ortho/Para Directors (Activating except for halogens)

halogens are deactivating ortho/para directors (pi donating but withdrawing inductively)

Meta Directors (Deactivating)

Strongest donating group usually directs when there are competing substituents

Side-Chain Reactions of Benzenes

Permanganate Oxidation

Chromic acid ($Na_2Cr_2O_7 / H_2SO_4$) achieves the same reaction

Side-chain Reduction

Clemmenson Reduction – reduces ketones and aldehydes to alkanes

Wolff Kishner Reduction does the same thing with H₂NNH₂, OH⁻, heat

General reduction

Rxn with Nitrous Acid - NaNO₂/HCl leads to formation of nitrosonium ion (NO⁺)

1° become diazonium salts, 2° become nitrosamines

Rxns of arenediazonium salts (Sandmeyer Rxns)

	H_3O^+	Ar—OH	phenols
	CuCl (Br)	Ar—Cl (Br)	aryl halides
+	CuCN	Ar—C≡N	benzonitriles
Ar-N≡N —	HBF ₄ (KI)	Ar—F (I)	aryl halides
	H ₃ PO ₂	Ar-H	benzene

Nucleophilic Aromatic Substitution (NAS)

strong nucleophile (NH_2^- or OH^- for example) replaces halide electron withdrawing groups ortho/para to halide facilitate reaction

1) Addition-Elimination mechanism

2) Benzyne mechanism (Elimination-Addition Mechanism)

Non-benzenoid Aromatics EAS with 5-membered Aromatic Heterocycles

EAS with pyridine (at the 3-position)

Nomenclature

Synthesis

Oxidation using chromic acid (H_2CrO_4) or PCC

Na₂Cr₂O₇/H₂SO₄ oxidizes 1° alcohols to carboxylic acids, 2° alcohols to ketones, and aldehydes to acids

PCC oxidizes 1° alcohols to aldehydes and 2° alcohols to ketones

Ozonolysis of alkenes - (1)O₃ (2) (CH₃)₂S

Friedel Crafts Acylation (a phenyl ketone) and Formylation (benzaldehyde)

Hydration of a Terminal Alkyne

(1) $(Sia)_2BH$ (2) H_2O_2 , NaOH to yield an aldehyde (anti-Markovnikov addition) $HgSO_4$, H_2SO_4 , H_2O to yield a ketone (Markovnikov addition)

Grignard Addition to Nitriles

Organolithium Addition to DMF

Reactions of Ketones and Aldehydes

Nucleophilic addition to a carbonyl (with and without acid catalysis) aldehydes are more reactive than ketones

Acetylide and Grignard addition

Grignard addition to acid halides, acid anhydrides, and esters

Hydride Reduction Rxns

NaBH₄ reduces ketones, aldehydes, and acid halides

LiAlH₄ reduces ketones, aldehydes, acid chlorides, esters, carboxylic acids, and amides (and others)

DIBALH reduces esters to aldehydes

H₂, Pd/C reduces alkenes, alkynes, and nitro groups

rxn with a 1° amine

Formation of enamines

Hydration (Acid- or Base-catalyzed)

 H^+

Addition of alcohols (formation of hemiacetals, acetals, hemiketals, and ketals) – acid- and base-catalyzed Base-catalyzed

H₂ Pd/C OH

Addition to a Conjugated Carbonyl

NaBH₄/CeCl₃ and organolithium add to the carbonyl (1,2-addition) Grignards often result in both 1,2- and 1,4-addition CN^{-} , OH⁻, R₂CuLi, and bulky grignards add to the β carbon (1,4-addition)

Wittig Rxn $- P(Ph)_3 + R-X + BuLi$ gives a phosphorous ylide -ylide reacts with a ketone or aldehyde to yield an alkene (C=O converted to C=C)

Carboxylic Acids

NomenclatureSynthesisGrignard addition to CO_2 (Adds 1 carbon)Hydrolysis of Nitriles - R-CN + H₃O⁺ \leftrightarrow RCOOH(Adds 1 carbon)

Oxidation of 1° alcohols and aldehydes – $Na_2Cr_2O_7/H_2SO_4$ Cleavage of alkenes with $KMnO_4$ – conc. $KMnO_4$ /heat, H_3O^+ Oxidation of alkylbenzenes to benzoic acids with $KMnO_4$ or chromic acid

Carboxylic Acid Derivatives

Acid halides, anhydrides, esters, amides, and nitriles Nomenclature (acid halides, anhydrides, esters, cyclic esters, amides, cyclic amides, and nitriles)

Nucleophilic Acyl Substitution

-Reactivity (acid chlorides > anhydrides > esters > amides > carboxylates)

• can convert *more* reactive derivatives into *less* reactive derivatives, <u>not</u> the other way around!! Saponification of Esters

Gabriel Synthesis – template synthesis using phthalimide

Organic Chemistry Chapter 18 – Alpha Additions

Acidity of alpha hydrogens

Keto-enol tautomerism

LDA (lithium diisopropyl amide) is a strong base used to form enolate ions

Alpha halogenation

Base-promoted (X₂/OH⁻, H₂O) Acid-catalyzed halogenation of ketones HVZ Rxn

Alpha alkylation

Alkylation of enolate ions ($S_N 2$ rxn with an enolate attacking an alkyl halide); only for ketones Stork rxn – convert ketone to enamine with 2° amine and α -alkylate followed by hydrolysis

Alkylation at Beta Carbon

Michael addition – a 1,4-addition of a conjugated ketone

Michael donor is typically a stabilized enolate ion or R₂CuLi Acceptor is a conjugated carbonyl, cyano, or nitro group

Aldol Condensation – Acid catalyzed – enol adds to a ketone or aldehyde Base-catalyzed - enolate adds to a ketone or aldehyde

 β -ketoalcohol from Aldol addition to ketone or aldehyde Only stable if alpha C contains no enolizable hydrogens

enone (i.e. α,β-unsatuated ketone) from Aldol addition to ketone or aldehyde Occurs if any enolizable

hydrogens at alpha carbon

Claisen Condensation – enolate attacks an ester to form a β -dicarbonyl (self and crossed)

 β -dicarbonyl compound from Claisen addition to an ester

Malonic Ester Synthesis – forms a substituted acetic acid (adds 2 carbons)

malonic ester

Acetoacetic Ester Synthesis – forms a substituted acetone (methyl ketones)

ethyl acetoacetate

2) Aldol (Intramolecular)

Nomenclature

Basicity

<u>Synthesis</u>

Gabriel Synthesis – template synthesis using phthalimide

Reduction of nitro-compounds, azides, nitriles (H₂/Pd/C or LAH)

Hofmann Rearrangement

Beckman Rearrangement

Rxns of Amines

Hinsberg Test (for 1° and 2° amines only)

Product with 1° amine is soluble in base while product with 2° amine is not

Hofmann Elimination

(1) Excess CH_3I (2) Ag_2O/H_2O (3) Heat

Cope Elimination (elimination of an amine-oxide) $(1) H_2O_2$ (2) Heat

Phase Transfer Catalysis (with quaternary ammonium salts) TEBAC

Reductive Amination

Organic Chemistry Chapter 20 – Carbon-Carbon Coupling Reactions

Gilman Reagent (lithium dialkyl cuprate with conjugated carbonyl)

Heck (vinyl halide with conjugated ester, nitrile, or aldehyde with $Pd(PAr_3)_4$ and Et_3N)

